Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input.

نویسندگان

  • R W Stackman
  • J S Taube
چکیده

Vestibular information influences spatial orientation and navigation in laboratory animals and humans. Neurons within the rat anterior thalamus encode the directional heading of the animal in absolute space. These neurons, referred to as head direction (HD) cells, fire selectively when the rat points its head in a specific direction in the horizontal plane with respect to the external laboratory reference frame. HD cells are thought to represent an essential component of a neural network that processes allocentric spatial information. The functional properties of HD cells may be dependent on vestibular input. Here, anterior thalamic HD cells were recorded before and after sodium arsanilate-induced vestibular system lesion. Vestibular lesions abolished the directional firing properties of HD cells. The time course of disruption in the directional firing properties paralleled the loss of vestibular function. Arsanilate-treated rats exhibited only minor changes in locomotor behavior, which were unlikely to account for the loss of direction-specific firing. Vestibular lesions also disrupted the influence of angular head velocity on anterior thalamic single-unit firing rates. Finally, a subset of anterior thalamic neurons recorded from vestibular-lesioned rats exhibited a pattern of intermittent firing bursts that were distinctly unrelated to HD. This novel anterior thalamic firing pattern has not been encountered in any vestibular-intact rat. These data suggest that: (1) the neural code for directional bearing is critically dependent on vestibular information; and (2) this loss of HD cell information may represent a neurobiological mechanism to account for the orientation and navigational deficits observed after vestibular dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla.

Head direction (HD) cells in the rat anterodorsal thalamic nucleus (ADN) fire relative to the animal's directional heading. Lesions of the entire vestibular labyrinth have been shown to severely alter VIIIth nerve input and disrupt these HD signals. To assess the specific contributions of the semicircular canals without altering tonic VIIIth nerve input, ADN cells were recorded from chinchillas...

متن کامل

Passive movements of the head do not abolish anticipatory firing properties of head direction cells.

Neurons in the anterior dorsal thalamic nucleus (ADN) of the rat selectively discharge in relation to the animal's head direction (HD) in the horizontal plane. Temporal analyses of cell firing properties reveal that their discharge is optimally correlated with the animal's future directional heading by approximately 24 ms. Among the hypotheses proposed to explain this property is that ADN HD ce...

متن کامل

The nucleus prepositus hypoglossi contributes to head direction cell stability in rats.

Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus ...

متن کامل

Modeling attractor deformation in the rodent head-direction system.

We present a model of the head-direction circuit in the rat that improves on earlier models in several respects. First, it provides an account of some of the unique characteristics of head-direction (HD) cell firing in the lateral mammillary nucleus and the anterior thalamus. Second, the model functions without making physiologically unrealistic assumptions. In particular, it implements attract...

متن کامل

Interaction between the postsubiculum and anterior thalamus in the generation of head direction cell activity.

Previous research has identified neurons in the postsubiculum (PoS) and anterior dorsal thalamic nucleus (AD) of the rat that discharge as a function of the animal's head direction. In addition, anatomical studies have shown that the AD and PoS are reciprocally connected with one another. The current study examined whether head direction (HD) cells in each of the two areas is dependent on input...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 1997